22147101

FURTHER MATHEMATICS

HIGHER LEVEL

PAPER 1

Wednesday 21 May 2014 (afternoon)
2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [150 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 6]

Find the positive square root of the base 7 number (551662) $)_{7}$, giving your answer as a base 7 number.
2. [Maximum mark: 7]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{3}-x^{3}$ for which $y=1$ when $x=0$. Use Euler's method with a step length of 0.1 to find an approximation for the value of y when $x=0.4$.
3. [Maximum mark: 6]

The following table shows the probability distribution of the discrete random variable X.

x	1	2	3
$\mathrm{P}(X=x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(a) Show that the probability generating function of X is given by

$$
\begin{equation*}
G(t)=\frac{t(1+t)^{2}}{4} . \tag{2}
\end{equation*}
$$

(b) Given that $Y=X_{1}+X_{2}+X_{3}+X_{4}$, where $X_{1}, X_{2}, X_{3}, X_{4}$ is a random sample from the distribution of X,
(i) state the probability generating function of Y;
(ii) hence find the value of $\mathrm{P}(Y=8)$.
4. [Maximum mark: 12]

The matrix \boldsymbol{M} is defined by $\boldsymbol{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

The eigenvalues of \boldsymbol{M} are denoted by λ_{1}, λ_{2}.
(a) Show that $\lambda_{1}+\lambda_{2}=a+d$ and $\lambda_{1} \lambda_{2}=\operatorname{det}(\boldsymbol{M})$.
(b) Given that $a+b=c+d=1$, show that 1 is an eigenvalue of \boldsymbol{M}.
(c) Find eigenvectors for the matrix $\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$.
5. [Maximum mark: 7]
(a) Assuming the Maclaurin series for e^{x}, determine the first three non-zero terms in the Maclaurin expansion of $\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$.
(b) The random variable X has a Poisson distribution with mean μ. Show that $\mathrm{P}(X \equiv 1(\bmod 2))=a+b \mathrm{e}^{c \mu}$ where a, b and c are constants whose values are to be found.

$$
[4]
$$

6. [Maximum mark: 9]

The parabola P has equation $y^{2}=4 a x$. The distinct points $\mathrm{U}\left(a u^{2}, 2 a u\right)$ and $\mathrm{V}\left(a v^{2}, 2 a v\right)$ lie on P, where $u, v \neq 0$. Given that UÔV is a right angle, where O denotes the origin,
(a) show that $v=-\frac{4}{u}$;
(b) find expressions for the coordinates of W , the midpoint of [UV], in terms of a and u;
(c) show that the locus of W , as u varies, is the parabola P^{\prime} with equation $y^{2}=2 a x-8 a^{2}$;
(d) determine the coordinates of the vertex of P^{\prime}.
7. [Maximum mark: 11]

The weights, in grams, of 10 apples were measured with the following results:

$$
\begin{array}{llllllllll}
212.2 & 216.9 & 209.0 & 215.5 & 215.9 & 213.5 & 208.9 & 213.8 & 216.4 & 209.9
\end{array}
$$

You may assume that this is a random sample from a normal distribution with mean μ and variance σ^{2}.
(a) Giving all your answers correct to four significant figures,
(i) determine unbiased estimates for μ and σ^{2};
(ii) find a 95% confidence interval for μ.

Another confidence interval for $\mu,[211.5,214.9]$, was calculated using the above data.
(b) Find the confidence level of this interval.
8. [Maximum mark: 12]

The group $\{G, *\}$ has a subgroup $\{H, *\}$. The relation R is defined, for $x, y \in G$, by $x R y$ if and only if $x^{-1} * y \in H$.
(a) Show that R is an equivalence relation.
(b) Given that $G=\{0, \pm 1, \pm 2, \ldots\}, H=\{0, \pm 4, \pm 8, \ldots\}$ and $*$ denotes addition, find the equivalence class containing the number 3 .
9. [Maximum mark: 5]

ABCDEF is a hexagon. A circle lies inside the hexagon and touches each of the six sides. Show that $A B+C D+E F=B C+D E+F A$.
10. [Maximum mark: 12]

The matrix \boldsymbol{A} is given by $\boldsymbol{A}=\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 3 & 1\end{array}\right)$.
(a) Given that \boldsymbol{A}^{3} can be expressed in the form $\boldsymbol{A}^{3}=a \boldsymbol{A}^{2}+b \boldsymbol{A}+c \boldsymbol{I}$, determine the values of the constants a, b, c.
(b) (i) Hence express \boldsymbol{A}^{-1} in the form $\boldsymbol{A}^{-1}=d \boldsymbol{A}^{2}+e \boldsymbol{A}+f \boldsymbol{I}$ where $d, e, f \in \mathbb{Q}$.
(ii) Use this result to determine \boldsymbol{A}^{-1}.
11. [Maximum mark: 9]

The random variables X, Y follow a bivariate normal distribution with product moment correlation coefficient ρ. The following table gives a random sample from this distribution.

x	5.1	3.8	3.7	2.5	4.0	3.7	1.6	2.8	3.3	2.9
y	4.6	4.9	4.1	5.9	4.2	1.6	5.1	2.1	6.4	4.7

(a) Determine the value of r, the product moment correlation coefficient of this sample.
(b) (i) Write down hypotheses in terms of ρ which would enable you to test whether or not X and Y are independent.
(ii) Determine the p-value of the above sample and state your conclusion at the 5% significance level. Justify your answer.
(c) (i) Determine the equation of the regression line of y on x.
(ii) State whether or not this equation can be used to obtain an accurate prediction of the value of y for a given value of x. Give a reason for your answer.
12. [Maximum mark: 11]

Consider the infinite series $S=\sum_{n=1}^{\infty} \frac{x^{n}}{2^{2 n}\left(2 n^{2}-1\right)}$.
(a) Determine the radius of convergence.
(b) Determine the interval of convergence.
13. [Maximum mark: 9]

The function $f: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \times \mathbb{R}^{+}$is defined by $f(x, y)=\left(x y, \frac{x}{y}\right)$.
Prove that f is a bijection.
14. [Maximum mark: 12]
(a) The function g is defined by $g(x, y)=x^{2}+y^{2}+d x+e y+f$ and the circle C_{1} has equation $g(x, y)=0$.
(i) Show that the centre of C_{1} has coordinates $\left(-\frac{d}{2},-\frac{e}{2}\right)$ and the radius of C_{1} is $\sqrt{\frac{d^{2}}{4}+\frac{e^{2}}{4}-f}$.
(ii) The point $\mathrm{P}(a, b)$ lies outside C_{1}. Show that the length of the tangents from P to C_{1} is equal to $\sqrt{g(a, b)}$.
(b) The circle C_{2} has equation $x^{2}+y^{2}-6 x-2 y+6=0$.

The line $y=m x$ meets C_{2} at the points R and S .
(i) Determine the quadratic equation whose roots are the x-coordinates of R and S .
(ii) Hence, given that L denotes the length of the tangents from the origin O to C_{2}, show that $\mathrm{OR} \times \mathrm{OS}=L^{2}$.
15. [Maximum mark: 12]
(a) Show that the solution to the linear congruence $a x \equiv b(\bmod p)$, where $a, x, b, p \in \mathbb{Z}^{+}$, p is prime and a, p are relatively prime, is given by $x \equiv a^{p-2} b(\bmod p)$.
(b) Consider the congruences

$$
\begin{aligned}
& 7 x \equiv 13(\bmod 19) \\
& 2 x \equiv 1(\bmod 7) .
\end{aligned}
$$

(i) Use the result in (a) to solve the first congruence, giving your answer in the form $x \equiv k(\bmod 19)$ where $1 \leq k \leq 18$.
(ii) Find the set of integers which satisfy both congruences simultaneously.
16. [Maximum mark: 10]
$\left\{G, *^{*}\right\}$ is a group of order N and $\{H, *\}$ is a proper subgroup of $\{G, *\}$ of order n.
(a) Define the right coset of $\{H, *\}$ containing the element $a \in G$.
(b) Show that each right coset of $\{H, *\}$ contains n elements.
(c) Show that the union of the right cosets of $\{H, *\}$ is equal to G.
(d) Show that any two right cosets of $\{H, *\}$ are either equal or disjoint.
(e) Give a reason why the above results can be used to prove that N is a multiple of n.

