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Full marks are not necessarily awarded for a correct answer with no working.  Answers must be supported 

by working and/or explanations.  In particular, solutions found from a graphic display calculator should 

be supported by suitable working.  For example, if graphs are used to find a solution, you should sketch 
these as part of your answer.  Where an answer is incorrect, some marks may be given for a correct method, 

provided this is shown by written working.  You are therefore advised to show all working.

1. [Maximum mark:  6]

 Find the positive square root of the base 7 number (551662)7 , giving your answer as a  

base 7 number.

2. [Maximum mark:  7]

 Consider the differential equation 3 3d

d

y
y x

x
= −  for which 1y =  when 0x = .  Use Euler’s 

 

method with a step length of 0.1 to find an approximation for the value of  y  when 0.4x = .

3. [Maximum mark:  6]

 The following table shows the probability distribution of the discrete random variable  X .

x 1 2 3

P( )X x=
1

4

1

2

1

4

 (a) Show that the probability generating function of  X  is given by

2(1 )
( )

4

t t
G t

+
= . [2]

 (b) Given that 1 2 3 4Y X X X X= + + + , where 1 2 3 4, , ,X X X X  is a random sample from the 

distribution of  X ,

  (i) state the probability generating function of  Y ;

  (ii) hence find the value of P( 8)Y = . [4]
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4. [Maximum mark:  12]

 The matrix  M  is defined by 
a b

c d

 
=  
 

M .

The eigenvalues of  M  are denoted by 1λ , 2λ .

 (a) Show that 1 2 a dλ λ+ = +  and 1 2 det ( )λ λ = M . [3]

 (b) Given that 1a b c d+ = + = , show that 1 is an eigenvalue of  M . [2]

 (c) Find eigenvectors for the matrix 
2 1

3 2

− 
 − 

. [7]

5. [Maximum mark:  7]

 (a) Assuming the Maclaurin series for ex , determine the first three non-zero terms in the 

Maclaurin expansion of e e

2

x x−−
. [3]

 (b) The random variable  X  has a Poisson distribution with mean µ .  Show that 

( )P 1(mod 2) ecX a b µ≡ = +  where  a ,  b  and  c  are constants whose values are to  

be found. [4]

6. [Maximum mark:  9]

 The parabola  P  has equation 2 4y ax= .  The distinct points ( )2U , 2au au  and ( )2V , 2av av  lie 

on  P , where , 0u v ≠ .  Given that ˆUOV  is a right angle, where O denotes the origin,

 (a) show that 
4

v
u

= − ; [3]

 (b) find expressions for the coordinates of W, the midpoint of [UV], in terms of  a  and  u ; [2]

 (c) show that the locus of W, as  u  varies, is the parabola P′  with equation 2 22 8y ax a= − ; [2]

 (d) determine the coordinates of the vertex of P′ . [2]
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7. [Maximum mark:  11]

 The weights, in grams, of 10 apples were measured with the following results:

212.2 216.9 209.0 215.5 215.9 213.5 208.9 213.8 216.4 209.9

 You may assume that this is a random sample from a normal distribution with mean µ  and 

variance 2σ .

 (a) Giving all your answers correct to four significant figures,

  (i) determine unbiased estimates for µ  and 2σ ;

  (ii) find a 95 % confidence interval for µ . [5]

 Another confidence interval for µ , [211.5, 214.9], was calculated using the above data.

 (b) Find the confidence level of this interval. [6]

8. [Maximum mark:  12]

 The group { }, *G  has a subgroup { }, *H .  The relation  R  is defined, for ,x y G∈ , by  xRy  if 

and only if 1 *x y H− ∈ .

 (a) Show that  R  is an equivalence relation. [8]

 (b) Given that { }0, 1, 2,G = ± ± … , { }0, 4, 8,H = ± ± …  and * denotes addition, find the 
equivalence class containing the number 3. [4]

9. [Maximum mark:  5]

 ABCDEF is a hexagon.  A circle lies inside the hexagon and touches each of the six sides.  
Show that AB CD EF BC DE FA+ + = + + .
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10. [Maximum mark:  12]

 The matrix  A  is given by 
1 2 1
1 1 2
2 3 1

 
 =
 
 

A .

 (a) Given that 3
A  can be expressed in the form 3 2a b c= + +A A A I , determine the values of 

the constants  a ,  b ,  c . [7]

 (b) (i) Hence express 1−
A  in the form 1 2d e f− = + +A A A I  where , ,d e f ∈ .

  (ii) Use this result to determine 1−
A . [5]

11. [Maximum mark:  9]

 The random variables  X ,  Y  follow a bivariate normal distribution with product moment 

correlation coefficient ρ .  The following table gives a random sample from this distribution.

x 5.1 3.8 3.7 2.5 4.0 3.7 1.6 2.8 3.3 2.9

y 4.6 4.9 4.1 5.9 4.2 1.6 5.1 2.1 6.4 4.7

 (a) Determine the value of  r , the product moment correlation coefficient of this sample. [2]

 (b) (i) Write down hypotheses in terms of ρ  which would enable you to test whether or 

not  X  and  Y  are independent.

  (ii) Determine the  p-value of the above sample and state your conclusion at the  
5 % significance level.  Justify your answer. [5]

 (c) (i) Determine the equation of the regression line of  y  on  x .

  (ii) State whether or not this equation can be used to obtain an accurate prediction of  

the value of  y  for a given value of  x .  Give a reason for your answer. [2]
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12. [Maximum mark:  11]

Consider the infinite series ( )2 2
1  2  n     2n −1

n

n

x
S

∞

=

=∑ .

(a) Determine the radius of convergence. [4]

(b) Determine the interval of convergence. [7]

13. [Maximum mark:  9]

The function :f + + + +× → ×     is defined by ( , ) ,
x

f x y xy
y

 
=  
 

.

Prove that f  is a bijection.

14. [Maximum mark:  12]

(a) The function  g  is defined by 2 2( , )g x y x y dx ey f= + + + +  and the circle 1C  has  

equation ( , ) 0g x y = .

(i) Show that the centre of 1C  has coordinates ,
2 2

d e − − 
 

 and the radius of 1C

is 
2 2

4 4

d e
f+ − .

(ii) The point P ( , )a b  lies outside 1C .  Show that the length of the tangents from P  

to 1C  is equal to ( , )g a b . [6]

(b) The circle 2C  has equation 2 2 6 2 6 0x y x y+ − − + = .

The line y mx=  meets 2C  at the points R and S.

(i) Determine the quadratic equation whose roots are the  x-coordinates of R and S.

(ii) Hence, given that  L  denotes the length of the tangents from the origin O to 2C , 

show that 2OR OS L× = . [6]
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15. [Maximum mark:  12]

 (a) Show that the solution to the linear congruence (mod )ax b p≡ , where , , ,a x b p +∈ ,   

p  is prime and  a ,  p  are relatively prime, is given by 2 (mod )px a b p−≡ . [4]

 (b) Consider the congruences

7 13(mod 19)x ≡

2 1(mod 7)x ≡ .

  (i) Use the result in (a) to solve the first congruence, giving your answer in the form 
(mod 19)x k≡  where 1 18k≤ ≤ .

  (ii) Find the set of integers which satisfy both congruences simultaneously. [8]

16. [Maximum mark:  10]

 { }, *G  is a group of order  N  and { }, *H  is a proper subgroup of { }, *G  of order  n .

 (a) Define the right coset of { }, *H  containing the element a G∈ . [1]

 (b) Show that each right coset of { }, *H  contains  n  elements. [2]

 (c) Show that the union of the right cosets of { }, *H  is equal to  G . [2]

 (d) Show that any two right cosets of { }, *H  are either equal or disjoint. [4]

 (e) Give a reason why the above results can be used to prove that  N  is a multiple of  n . [1]


